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Abstract

It is well known that vibrations can occur in screw jack mechanisms under certain conditions, especially
during downward motion. Several models have been proposed in the literature in order to explain this
vibratory phenomenon due to system instability. Nevertheless, to the best of our knowledge, complete and
accurate experimental results have never been carried out before. In this paper, the mechanical system made
up of a screw and a nut is analyzed. Then a 2 dof model is introduced. In particular, this model shows that
the system is unstable when the moment of inertia J1 of a mass clamped to the free end of the screw is in a
range between two boundary values J1 min and J1 max : These values depend on the mechanical
characteristics of the system. The existence of this range is experimentally observed. Moreover, it is shown
that theoretical values J1 min and J1 max are in good agreement with the experimental ones.

From a design point of view, the second main contribution of this work consists in providing a simple but
effective way to avoid instability in screw jack mechanisms: in order to prevent the mechanism from
vibrating (instability), it is sufficient to clamp (when allowed) an inertia mass to the free end of the screw.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Although screw jack mechanisms have been widely employed in industry, their dynamic
behavior is still poorly understood. In particular, from a design point of view, it is essential to
know the conditions for avoiding vibrations. In fact, one can find many practical instances where
see front matter r 2004 Elsevier Ltd. All rights reserved.
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vibrations may occur. Not only vibrations produce loud noise, they can also damage the whole
mechanism.

Olofsson [1] built an instrumented prototype representing a simple screw jack mechanism in
order to gain an insight into the problem of vibrations. He experimentally found some conditions
that could lead to vibrations. However, he did not provide a theoretical explanation of the
phenomenon.

It has been proven that the phenomenon of vibrations in a screw jack mechanism, under certain
conditions, is due to the so-called friction-induced instability. Among others, Dupont [2,3] by
means of a simple 1 dof model, gave an elegant explanation of the phenomenon. He found that, in
a non-backdrivable screw jack mechanism, the stability condition is given by a relationship
involving the masses of the nut and the screw, the friction coefficient and the screw helix angle.

This theory has been improved by Gallina et al. [4] by introducing a 2 dof model and taking into
account both axial and torsional stiffnesses of the screw. In such a model, the two generalized
coordinates are the vertical displacement of the screw and the torsional displacement of the screw.
The results they found are in good agreement with the conclusion given by Dupont. Moreover,
the new model led to the following important result from a design point of view: stability
condition requires that the ratio between the axial and torsional natural frequencies of the screw
jack do not exceed a given limit. By means of this model, it has been possible to eliminate
vibrations that occurred during the operation of a big platform (140 ton in weight) of a stage in a
theater. Practically, this was obtained by placing a layer of cellular rubber between the surface of
the concrete beam and the plate, where the top of the screw was suspended to. In this way, the
axial natural frequency of the screw as well as the ratio between the axial and the torsional natural
frequencies of the screw jack was reduced.

In this work, exploiting a similar model, it is shown that vibrations can be avoided by simply
increasing the moment of inertia of a mass fixed to the free end of the screw. This solution has two
advantages with respect to the one proposed in Ref. [4]: first of all, modifying the moment of
inertia of a body is easier than providing a given axial stiffness; secondly, this solution does not
require to disassemble the whole system.

In Section 2, the 2 dof model is described. Stability analysis is carried out in Section 3.
Eventually, in Section 4, the model is verified by means of experimental results.
2. Two degrees of freedom model

The 2 dof model here presented is schematized in Fig. 1.
The mechanism could be analyzed by introducing a continuum model of the screw, as far as

torsional vibrations are concerned. Such a model would complicate the mathematical treatment
since infinite degrees of freedom would be introduced. Therefore, in order to gain an insight into
the problem, here the screw jack is schematized by an equivalent rigid screw coupled to a nut of
mass m: r denotes the mean radius of the thread. The screw is placed in a vertical position; its
length is l: One end of the screw is clamped to the frame, while the other one is free. The nut
engages at the free end of the screw. f is the screw angular position while u is the screw axial
displacement along the screw axis. The screw torsional elasticity is schematized by a torsional
spring of stiffness kf: In the same way, the screw axial elasticity is schematized by a spring of
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Fig. 1. Schematic diagram of the system.
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stiffness kg placed between the screw and the frame. According to the theory of the continuum
model of a circular section shaft, if the frame is assumed to be perfectly rigid, the torsional and the
axial stiffnesses assume the values

kg ¼ G Ip=l;

kf ¼ E Ar=l; ð1Þ

where G is the modulus of rigidity, Ip ¼ ðp=2Þr4 is the polar moment of inertia, E is the Young’s
modulus and Ar ¼ pr2 is the screw section area.

In order to simplify the mathematical model, both nut and screw are assumed to be rigid
bodies.

A mass m1 is clamped at the free end of the screw. Its moment of inertia is J1: It will be shown
that this mass has the function of stabilizing the system.

The nut is assumed always to be in contact with the screw. Let ff be the nut angular position
and uf the nut vertical position. Since the model is made up of two rigid bodies interacting with
each other, two dynamic equations can be carried out. The first one is related to the undamped
rotational equation of motion of the screw

ðJf þ J1Þ
€fþ kff ¼ T ; (2)

where T is the torque the nut exerts on the screw. The torque T is assumed to be positive when
counter-clockwise oriented (top view). The nut is assumed to move upwards when it rotates
counter-clockwise (top view).

Jf represents the moment of inertia of the equivalent screw.
The undamped translational equation of motion of the screw along its axis is

ðm1 þ mnÞ €u þ kgu ¼ �P � ðm1 þ mnÞg; (3)
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where mv is the equivalent screw mass and g is the gravity acceleration. P is the vertical load the
nut exerts on the screw. The nut vertical displacement uf ; its angular position ff and the screw
angular position f must satisfy the following kinematic relationship:

uf ¼ ff r tan d� fr tan dþ u; (4)

where d ¼ arctan ðp=2prÞ is the screw helix angle, p is the screw pitch and r is the screw mean
radius. The last equation to complete the 2 dof model comes from the expression of the torque T :

In this regard, it must be highlighted that two kinds of screws are employed in common screw
jack mechanisms: square-threaded screws and V-thread screws. In both cases, the nut exerts a
vertical load P on the screw.

Case 1: Square-threaded screw

By applying the analogy between a screw thread and the inclined plane, one obtains the torque
the nut exerts on the screw [4].

T ¼ rPðtan dþ f sgnorelÞ=ð1 � tan ðdÞf sgnorelÞ; (5)

where f is the friction coefficient. orel ¼
_ff �

_f represents the relative angular velocity between the
screw and the nut. Eq. (4) is carried out by observing that the screw jack mechanism can be thought
of as a wedge, where the rotation movement of the nut is replaced by an equivalent horizontal one.

By exploiting the relationship f ¼ tan Zs; where Zs is the angle of friction, Eq. (5) becomes

T ¼ rP tanðdþ Zs sgnorelÞ; (6)

where Zs is a function of the sliding velocity between the nut and the thread. Therefore, it can be
written as

Zs ¼ ZsðnsÞ ¼ ZsðrjoreljÞ; (7)

where ns represents the absolute value of the sliding speed. For the sake of simplicity, it is assumed
that the angle of friction depends only on the sign of the sliding speed, but not on its value
(coulomb friction model), therefore relationship (7) can be simplified in the following:

Zs ¼ ZsðnsÞ ¼ Z; (8)

where Z is constant.
Therefore, when the nut rotates counter-clockwise ( _ff 40) and the term _f is reasonably

assumed to be negligible when compared to the nut’s speed, the sliding speed is positive and the
torque the nut exerts on the screw is T ¼ rP tanðdþ ZÞ: On the contrary, when the nut rotates
clockwise (downward motion of the nut), the torque is T ¼ rP tanðd� ZÞ:

Case 2: Triangular-threaded screw (or V-thread screw)
This case is more complicated, since it is necessary to take into account the angle on a normal

section perpendicular to the helix cn [5]. Referring to Fig. 2, the plane is a portion of the thread on
the surface at the mean radius r: For the sake of clarity an xyz local frame is given. The plane is
defined by means of the unit vectors i and j which are inclined at an angle of cn and d; respectively.

Vectors represented by thick lines are the forces the screw exerts on the nut. In particular, Fns is
the contact force between the screw and the nut normal to the contact surface: Fn is the force
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Fig. 2. Forces in a triangular-threaded screw.
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value while the unit vector s is normal to the thread surface. f sgnorelFnj is the friction force, j
being the nut motion direction. Since j ¼ � cos d; 0;� sin df g

T and i ¼ 0;� cos cn;� sin cn

� �T
; it

yields

s ¼ fsx; sy; szg ¼ ðj	 iÞ=jjj	 ijj: (9)

The whole force the screw exerts on the nut is

Fw ¼ Fnsþ f sgnorelFnj ¼ Fn

sx

sy

sz

8><
>:

9>=
>;þ f sgnorel

� cos d

0

� sin d

8><
>:

9>=
>;

0
B@

1
CA: (10)

The first component of Fw represents the force that produces the torque

T ¼ rFn sx � f sgnorel cos dð Þ (11)

which acts on the nut.
The third component of Fw represents the vertical load the screw exerts on the nut; therefore,

the vertical load the nut exerts on the screw is

P ¼ �Fnðsz � f sgnorel sin dÞ: (12)

By exploiting Eqs. (11) and (12), it can be inferred that the relationship between the torque T
the nut exerts on the screw and the vertical load P is

T ¼ PrL (13)

where L ¼ �ðsx � f sgnorel cos dÞ=ðsz � f sgnorel sin dÞ: f is a function of the sliding velocity
between the nut and the thread

f ¼ f ðvsÞ ¼ f ðrjoreljÞ: (14)

It is assumed that the friction coefficient depends only on the sign of the sliding speed, but not
on its value; therefore, it can be written as

f ¼ f ðvsÞ ¼ f r; (15)

where f r is constant.
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Therefore, during upward motion L assumes the value Lu ¼ �ðsx � f r cos dÞ=ðsz � f r sin dÞ;
while during downward motion, it becomes

Ld ¼ �ðsx þ f r cos dÞ=sz þ f r sin d: (16)

In conclusion, the torque the nut exerts on the screw in the two cases is summarized in Table 1.
In the literature [2–4], it has been shown that instability could occur in a screw jack mechanism

only during downward motion. Therefore, in the following, only downward motion ( _ffo0) is
considered. Moreover, the screw thread is assumed to be triangular in order to analyze a more
general situation.

The vertical equation of motion of the nut leads to

P ¼ mðg þ €uf Þ ¼ mðg � €fr tan dþ €uÞ; (17)

where m is the nut mass and P is the vertical load the screw exerts on the nut. The second part of
the equation is obtained by deriving Eq. (4) and assuming that the nut velocity is constant. Then,
Eq. (13) can be replaced by Eq. (2). Eqs. (2) and (3) form the following system:

ðJf þ J1Þ
€fþ kff ¼ PrLd ;

ðm1 þ mnÞ €u þ kgu ¼ �P � ðm1 þ mnÞg: ð18Þ

By making the value of the vertical load explicit by means of Eq. (17), system (18) becomes

ððJf þ J1Þ þ Ldmr2 tan dÞ €f� Ldmr €u þ kff ¼ gLdmr;

� mr tan d €fþ ðm þ m1 þ mnÞ €u þ kgu ¼ �ðm þ m1 þ mnÞg: ð19Þ

Using a matrix notation, the second-order linear differential equation system (19) becomes

M
€f

€u

( )
þ K

f

u

� �
¼

gLdmr

� m1 þ m þ mnð Þg

� �
; (20)

where

M ¼
J1 þ Jf þ Ldmr2 tan d �Ldmr

�mr tan d m þ mn þ m1

" #
;

K ¼
kf 0

0 kg

" #
: ð21Þ

Here it can be recalled that this mass matrix M represents the case in which the
screw jack mechanism is moving downward ( _ff o0). Instead, during upward motion the mass
Table 1

The torque the nut exerts on the screw in case of square thread or V-thread during upward or downward motion

Upwards Downwards

Square thread T ¼ Pr tanðdþ ZÞ T ¼ Pr tanðd� ZÞ
V-thread T ¼ PrLu T ¼ PrLd
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matrix would be

Mu ¼
J1 þ Jf þ Lumr2 tan d �Lumr

�mr tan d m þ mn þ m1

" #
:

Notice that the mass matrix Mu during upward motion and mass matrix M during downward
motion are not the same. Moreover, if the friction coefficient as null, the mass matrix would be
symmetric and unique. As a consequence, the system would be stable in the sense of weak
stability. We conclude that friction is responsible for instability.

It is reminded that for a conservative system both stiffness and inertia matrices have to be
symmetric.

System (20) is a non-conservative system since the inertia matrix is not symmetric because of a
non-null friction coefficient. This is understandable since a coulomb friction force is not a
conservative force.

System (20) can be given a better form by premultiplying by the matrix

Ma ¼
1=ðJ1 þ JfÞ 0

0 1=ðm þ mn þ m1Þ

� �
: (22)

Therefore, system (20) becomes

~M
€f

€u

( )
þ ~K

f

u

� �
¼

gLdmr=ðJ1 þ JfÞ

�g

� �
; (23)

where

~M ¼
1 þ ðLdmr2 tan dÞ=ðJ1 þ JfÞ �ðLdmrÞ=ðJ1 þ JfÞ

�ðmr tan dÞ=ðm þ mn þ m1Þ 1

" #
;

~K ¼
o2

f 0

0 o2
g

" #
: ð24Þ

The components of the stiffness matrix represent, respectively, the natural torsional frequency
of the screw included the stabilizing mass m1; without the nut, while the second is the natural axial
frequency of the screw included the mass of the nut

of ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf=ðJ1 þ JfÞ

q
;

og ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg=ðm þ mv þ m1Þ

q
: ð25Þ

Notation (23) is preferable to notation (20) because, from an experimental point of view, the
natural frequencies of and og are easier to measure than the stiffnesses kf and kg:
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3. Stability analysis

System (23) is a non-conservative undamped linear system [6] since the inertia matrix is non-
symmetric and the damping matrix is absent. In order to perform the stability analysis, the
method proposed in Ref. [6] will be followed. Such a method gives sufficient and necessary
conditions for a linear non-conservative undamped system to be stable, in a BIBO sense (weak
stability). The main feature of this method is that it does not require eigenvectors calculation. The
method and its application to system (23) will be explained in the Appendix.

In particular, it will be shown that the system is stable when

AX0;

BX0;

B2 � 4ACX0; ð26Þ

where the coefficient A; B and C are

A ¼ 1 þ
Ldmr2 tan d

J1 þ Jf
1 �

m

m þ mn þ m1

� �
;

B ¼ o2
f þ o2

g 1 þ
Ldmr2 tan d

J1 þ Jf

� �
;

C ¼ o2
fo

2
g: ð27Þ

In conclusion, when conditions (26) are not simultaneously satisfied, the system that describes
the dynamic behavior of the screw jack turns out to be unstable, since there exists at least one
eigenvector of system (23) which has a positive real part. As a consequence, both axial and
torsional vibrations occur. This phenomenon can be recorded by a set of accelerometers. In fact, it
produces a loud noise.
4. Experimental results

In order to validate the 2 dof model, a simple experimental apparatus has been built (see Fig. 3
on the left). It consists of a screw fixed to the frame, a cylindrical nut (of mass m) and a
mechanism clamped to the free end of the nut of mass m1: This latter (see Fig. 3 on the right) is
made up of a parallelepiped with two screws located in symmetric positions. By screwing the two
screws, it is possible to change the moment of inertia J1 of mass m1: The nut is manually operated:
downward motion is obtained by a counter-clockwise rotation.

In order to measure axial and torsional vibrations, two accelerometers (type PCB 352C22) are
employed. They have a voltage sensitivity of 10 mV/g, and a weight of 0.0005 kg. Accelerometer 1
is fixed to the free end of the screw in order to measure axial vibrations. Accelerometer 2 is fixed to
the mass m1 at a distance of 0.015 m far away from the screw axis so as to measure torsional
vibrations.

According to the theory of the previous section, in order to predict instability, the three values
A; B and B2 � 4AC have to be calculated. In particular, since the main goal of this work consists
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Fig. 3. Screw jack prototype. Nut, screw and the mass m1 with the two accelerometers on the left; the mass m1 on the

right.

Table 2

Parameters related to the screw jack prototype

m (kg) m1 (kg) r (m) d (rad) f r cn (rad)

1 0.02 0.005 0.054 0.19 0.524
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in analyzing the effect of the moment of inertia J1 as far as instability is concerned, the coefficients
given by Eq. (26) will be calculated and plotted versus the parameter J1:

Since the coefficients A; B and B2 � 4AC depend on many screw jack mechanical parameters, it
is necessary to estimate these parameters for obtaining the aforesaid plot.

The screw jack prototype is characterized by data given in Table 2. While m; m1; r; d and cn

are directly measured, the friction coefficient fr is estimated by exploiting Eqs. (13) and (15). In
fact, given a known vertical load P and measuring the minimum torque T that can move the nut,
it is possible to get the value fr.

Once f r is estimated, it is possible to calculate Ld by means of Eq. (16).
The natural frequencies involved in Eq. (27) are estimated in the following way. First of all,

according to Saint-Venant theory, the axial and torsional stiffnesses are

kg ¼ GIp=l;

kf ¼ EAr=l; ð28Þ

where G is the modulus of rigidity, Ip ¼ ðp=2Þr4 is the polar moment of inertia, E is the Young’s
modulus and Ar ¼ pr2 is the section area. Screw material characteristics are given in Table 3. mn
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Table 3

Screw material characteristics

r (kg/m3) E (N/m2) G (N/m2)

7800 2.1	 1011 8	 1010

P. Gallina / Journal of Sound and Vibration 282 (2005) 1025–10411034
and Jf are the most difficult parameters to estimate. In fact, as explained in Section 2, for the sake
of simplicity, the real screw is modeled as an equivalent rigid screw. Such a screw has mass mv and
moment of inertia Jf which are lower than the total mass of the screw mtot ¼ rpr2l and its
moment of inertia Jtot ¼

1
2
mtotr

2: In order to find the value mv; it is assumed that the first axial
natural frequency of the real screw has to equal the axial frequency of the equivalent one. From
the theory of vibration of continuum systems [7], it is known that the first natural frequency of the
axial oscillation of the screw is

ol ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
p

2l
: (29)

The same frequency has to be obtained by considering a mass mv of the equivalent screw
connected to the frame by means of the spring of stiffness kg

ol ¼

ffiffiffiffiffiffi
kg

mn

s
: (30)

By comparing Eqs. (29) and (30), the mass mn results as follows:

mn ¼ kg

, ffiffiffiffiffiffiffiffiffi
E=r

p
p

2l

 !2

: (31)

As far as the torsional vibrations are concerned, following the same line of reasoning, the first
natural frequency of the torsional oscillation of the screw is

ot ¼

ffiffiffiffiffiffiffiffiffi
G=r

p
p

2l
: (32)

The same frequency has to be obtained by considering a moment of inertia Jf of the equivalent
screw connected to the frame by means of the torsional spring of stiffness kf:

ot ¼

ffiffiffiffiffiffi
kf

Jf

s
) Jf ¼ kf

, ffiffiffiffiffiffiffiffiffi
G=r

p
p

2l

 !2

: (33)

The mass m1 can be easily measured. It results in m1=0.02 kg. Now that all the parameters are
involved in the expression of the coefficients A; B and B2 � 4AC have been obtained, it is possible
to study the stability of the system.

In the experiment, three different screw jack configurations have been considered: l ¼ l1 ¼

0:43 m; l ¼ l2 ¼ 0:53 m; l ¼ l3 ¼ 0:63 m: For each configuration, the values A; B and B2 � 4AC
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are calculated for different values of J1: Figs. 4 and 5 represent the theoretical values of A and B

versus J1 for the three configurations. Plots of A and B are always greater than zero. Therefore,
the first two conditions of (26) are always satisfied for every J1:

The plot of Fig. 6 is more interesting . It represents the value of B2 � 4AC versus J1 for the
three configurations. Let us recall that the system is stable when B2 � 4AC40: J1 min and J1 max
represent the intersections of the curve of B2 � 4AC with the abscissa axis. When J1oJ1 min; the
system is stable since the value B2 � 4AC is positive. When J1 minoJ1oJ1 max; the system is
unstable. Eventually, when J1 exceeds the value of J1 max; the system is stable again. As one can
see, the values of J1 min and J1 max are poorly affected by the value of l: Such theoretical values
of J1 min and J1 max are summarized in the third column of Table 4.

As it is shown in the following, the existence of these two theoretical values of J1 min and
J1 max is proved by experimental evidence. The experimental protocol is made up of the following
steps:
1.
 The length of the screw is set to l ¼ l1 ¼ 0:43 m:

2.
 By completely screwing the two screws of the mechanism of Fig. 3 (right figure), J1 is set to its

lowest value. With this set-up, the nut is manually rotated both in clockwise and counter-
clockwise directions. According to the theory, during upward motion (corresponding to the
counter-clockwise direction), vibrations do not occur. The same effect is obtained during
downward motion.
3.
 The value of J1 is increased by operating the two screws of the mechanism of mass m1: The nut
is then rotated in both directions. If no vibration occurs, J1 is increased again. This procedure
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Fig. 4. Theoretical value of coefficient A versus J1:
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Table 4

Comparison between theoretical and experimental data

Theoretical data (kg/m2) Experimental data (kg/m3) Error (%)

l ¼ l1 ¼ 0:43 m J1 min 2.24	 10�6 2.03	 10�6 9.38

J1 max 6.25	 10�6 8.34	 10�6 33.44

l ¼ l2 ¼ 0:53 m J1 min 2.05	 10�6 1.78	 10�6 13.17

J1 max 6.06	 10�6 8.04	 10�6 32.67

l ¼ l3 ¼ 0:63 m J1 min 1.85	 10�6 1.35	 10�6 27.03

J1 max 5.87	 10�6 7.91	 10�6 34.75

P. Gallina / Journal of Sound and Vibration 282 (2005) 1025–1041 1037
is repeated, increasing the value of J1 each time, until a vibration occurs (during downward
motion). In fact, according to the theory, a value of J1 was found so that, during downward
motion, the typical vibration due to the instability has been recorded. This value corresponds to
the experimental value of J1 min :
4.
 Then the value of J1 is slightly increased. As in step 3, the nut is rotated in both directions. If
the vibration is still present, J1 is increased again. This procedure is repeated, increasing the
value of J1 each time, until the vibration disappears (during downward motion). In fact,
according to the theory, a value of J1 was found so that, during downward motion, no
vibration due to the instability was recorded. This value corresponds to the experimental value
of J1 max :

The same procedure, from step (1) to step (4), is repeated for the other two screw heights l2

and l3: The experimental values of J1 min and J1 max are summarized in the fourth column of
Table 4.

Table 4 represents the most important result achieved by this work. In fact, Table 4 compares
experimental and theoretical results. In particular, by the 2 dof theoretical model, it has been
inferred that there exists an instability range given by J1 minoJ1oJ1 max : What is relevant is
that this range has been also experimentally observed. Not only does this range exist, but its
theoretical lower and upper boundaries J1 min and J1 max are also in good agreement with the
experimental values. In this regard it is sufficient to compare the third and the fourth columns of
Table 4.

In the fifth column, errors between theoretical and experimental results are given. We believe
that such errors are so high because of the high variability of some parameter values such as the
friction coefficient and screw geometry. Nevertheless, the existence of the boundaries J1 min and
J1 max has clearly been proven. This conclusion leads to the following important result from a
design point of view: in order to eliminate the vibration in a screw jack mechanism it is sufficient
to fix a mass (with a proper moment of inertia) to the screw.

In order to give an example of the instability behavior, both axial and torsional vibrations have
been recorded. For the sake of brevity, just the configuration with l ¼ l3 is taken into account
here. The moment of inertia of mass m1 has been set to the value J1 ¼ 5:58 	 10�6 kg m2: As it was
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Fig. 7. Vibrations recorded by the two accelerometers.
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predicted by the plot of Fig. 6, system (23) turns out to be unstable with this value of J1: Such an
instability is experimentally shown in Fig. 7. The solid line represents the signal coming from
accelerometer 2, while the dotted line represents the signal coming from accelerometer 1. Since the
axial vibration signal was very low, it was amplified 100 times before being plotted. As one can
see, there is an axial vibration coupled with a torsional one. The experimental vibration frequency
is f ev ¼ 692 Hz:

On the other hand, by calculating the eigenvalues of system (23), it is easy to obtain a
theoretical vibration frequency f tv ¼ 683 Hz: Therefore, once again, the theoretical result is in
good agreement with the experimental one.
5. Conclusions

Although vibration in screw jack mechanisms under certain conditions, especially during
downward motion is a known and remarkable problem, still the phenomenon has not been fully
analyzed. To the best of our knowledge, in literature there is no comparison between the
experimental and teh simulated results, as far as vibrations in screw jack mechanisms are
concerned. In this study a 2 dof model is proposed. The model takes into account both the square-
and triangular-threaded screws. Such a model has been validated by means of experimental
results.
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Both theoretical and experimental results lead to the following important result from a design
point of view: in order to eliminate the vibration in a screw jack mechanism, it is sufficient to fix a
mass (with a proper moment of inertia) to the screw.
Appendix A

The results of the theory presented in Ref. [6] are briefly summarized here.
A non-conservative undamped linear system is expressed in the form

M €xþ Kx ¼ 0; (A.1)

where M and K are arbitrary real square matrices of order n and x is the state vector. The
characteristic polynomial associated with system (A.1) has the structure

Ml2
þ K

!! !! ¼ a0l
2n
þ a1l

2ðn�1Þ
þ � � � þ an�1l

2
þ an; (A.2)

where a0; a1; . . . ; an are real coefficients.
It is possible to rewrite polynomial (A.2) by replacing m ¼ l2: The characteristic equation

becomes

f eðmÞ ¼ a0mn þ a1mn�1 þ � � � þ an�1mþ an ¼ 0: (A.3)

Polynomial (A.3) is referred to as reduced polynomial in the variable m:
Some useful definitions are given:

Definition 1. Given a polynomial f eðmÞ ¼ a0mn þ a1mn�1 þ � � � þ an�1mþ an; the following 2n 	 2n
matrix is called discrimination matrix:

Dðf eÞ ¼

a0 a1 a2 � � � an 0

0 na0 n � 1ð Þa1 � � � an�1 0

a0 a1 � � � an�1 an 0

na0 � � � 2an�1 an�1

� � � � � �

� � � � � �

0 a0 a1 � � � an

0 na0 � � � an�1

2
66666666666664

3
77777777777775
: (A.4)

The discrimination matrix, in turn, can be thought of as associated with the undamped system
or with the characteristic polynomial of the undamped system.

Definition 2. The sequence

D1; . . . ;Dnf g; (A.5)

where Di is the determinant of the sub-matrix of the discrimination matrix formed by the first 2i
rows and 2i columns, is called the discriminant sequence of the polynomial f ðmÞ ¼ a0mn þ a1mn�1 þ

� � � þ an�1mþ an: Sometimes, Di’s were called sub-discriminants or principal sub-resultants.
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Theorem. Consider a linear undamped system. Let its polynomial characteristic be a0l
2n
þ

a1l
2ðn�1Þ

þ � � � þ an�1l
2
þ an and its reduced polynomial be f eðmÞ ¼ a0mn þ a1mn�1 þ � � � þ an�1mþ

an: A necessary and sufficient condition for the system to be weakly stable is that all the elements of
the discriminant sequence of the reduced polynomial are non-negative and all the coefficients of the

polynomial are all non-positive or all non-negative. If such conditions are not satisfied, the system is
unstable, or, in other words, there exists an eigenvalue with a positive real part. It is reminded that a

system is weakly stable when all its eigenvalues are pure complex.

The theorem is now applied to the homogeneous system (23). The characteristic polynomial of
the undamped system is

~Ml2
þ ~K

!! !! ¼ Al4
þ Bl2

þ C ¼ 0; (A.6)

where

A ¼ 1 þ
Ldmr2 tan d

J1 þ Jf
1 �

m

m þ mn þ m1

� �
;

B ¼ o2
f þ o2

g 1 þ
Ldmr2 tan d

J1 þ Jf

� �
;

C ¼ o2
fo

2
g: ðA:7Þ

The theorem can be applied to the following reduced polynomial:

f eðmÞ ¼ Am2 þ Bmþ C ¼ 0: (A.8)

Its discrimination matrix is

DðgÞ ¼

A B C 0

0 2A B 0

0 A B C

0 0 2A B

2
6664

3
7775: (A.9)

Computing the discriminant sequence, it yields

D1 ¼ det
A B

0 2A

� �
; D2 ¼ det

A B C 0

0 2A B 0

0 A B C

0 0 2A B

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
: (A.10)

According to the theorem, in order for the system to be weakly stable, all the elements of the
discriminant sequence of the reduced polynomial must be non-negative; therefore,

D1X0 ) AX0;

D2X0 ) B2 � 4ACX0:
(A.11)

Moreover, the coefficients of the polynomial must be all non-positive or all non-negative. Since
C ¼ o2

fo
2
g40 it has to be

AX0 and BX0: (A.12)
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In conclusion, the system is stable (weakly stable) when

AX0;

BX0;

B2 � 4ACX0: ðA:13Þ
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